/images/avatar.webp

Markdown

Heading 1Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut sagittis commodo mauris, id semper ipsum condimentum sed. Nunc quam velit, malesuada et finibus a, laoreet vitae lacus. Morbi in augue sodales, semper tellus sed, scelerisque lacus. Pellentesque eu turpis non eros tristique malesuada. Quisque et magna eget lectus aliquet tempus. Donec ut nisl quis mauris tristique tincidunt. Sed eleifend facilisis enim, et gravida orci. Morbi erat ligula, commodo ut sapien non, blandit lacinia sem.

The Proof of Riemann Hypothesis by ChatGPT

The Riemann hypothesis is a conjecture about the distribution of prime numbers. It states that all nontrivial zeros of the Riemann zeta function have a real part equal to 12\frac1221​. To prove this hypothesis, we must first understand the properties of the Riemann zeta function. The Riemann zeta function is defined as: ζ(s)=∑n=1∞1ns\zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^s}ζ(s)=n=1∑∞​ns1​ where s is a complex number. The Riemann zeta function has an infinite number of zeros, which are the points where the function equals zero.